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Abstract. LIFE uses matching on order-sorted feature structures for passing
arguments to functions. As opposed to uni�cation which amounts to normalizing
a conjunction of constraints, solving a matching problem consists of deciding
whether a constraint (guard) or its negation are entailed by the context. We
give a complete and consistent set of rules for entailment and disentailment
of order-sorted feature constraints. These rules are directly usable for relative
simpli�cation, a general proof-theoretic method for proving guards in concurrent
constraint logic languages using guarded rules.

1 Introduction

LIFE [5] extends the computational paradigm of Logic Programming in two essential
ways:� using a data structure richer than that provided by �rst-order constructor terms; and,� allowing interpretable functional expressions as bona �de terms.
The �rst extension is based on  -terms which are attributed partially-ordered sorts
denoting sets of objects [1, 2]. In particular,  -terms generalize �rst-order constructor
terms in their rôle as data structures in that they are endowed with a uni�cation operation
denoting type intersection.

The second extension deals with building into the uni�cation operation a means
to reduce functional expressions using de�nitions of interpretable symbols over data
patterns. The basic insight is that uni�cation is no longer seen as an atomic operation
by the resolution rule. Indeed, since uni�cation amounts to normalizing a conjunction
of equations, and since this normalization process commutes with resolution, these
equations may be left in a normal form that is not a fully solved form. In particular,
if an equation involves a functional expression whose arguments are not suf�ciently
instantiated to match a de�niens of the function in question, it is simply left untouched.
Resolution may proceed until the arguments are proven to match a de�nition from the
accumulated constraints in the context [3]. This simple idea turns out invaluable in
practice.

This technique|delaying reduction and enforcing determinism by allowing only
equivalence reductions|is called residuation [3]. It does not have to be limited to
functions. Therefore, we explain it for the general case of relations. Intuitively, the
arguments of a relation which are constrained by the guard are its input parameters and
correspond to the arguments of a function. This has been used as an implicit control



mechanism in general concurrent constraint logic programming schemes; e.g., the logic
of guarded Horn-clauses studied by Maher [11], Concurrent Constraint Programming
(CCP) [12], and Kernel Andorra Prolog (KAP) [9]. These schemes are parameterized
with respect to an abstract class of constraint systems. An incremental test for entailment
and disentailment between constraints is needed for advanced control mechanisms such
as delaying, coroutining, synchronization, committed choice, and deep constraint
propagation. LIFE is formally an instance of this scheme, namely a CLP language using
a constraint system based on order-sorted feature (OSF) structures [5]. It employs a
related, but limited, suspension strategy to enforce deterministic functional application.
Roughly, these systems are concurrent thanks to a new effective discipline for procedure
parameter-passing that can be described as \call-by-constraint-entailment" (as opposed
to Prolog’s call-by-uni�cation).

The most direct way to explain the issue is with an example. In LIFE, one can de�ne
functions as usual; say:

fact(0) ! 1:
fact(N : int)! N � fact(N � 1):

More interesting is the possibility to compute with partial information. For example:

minus(negint)! posint:
minus(posint)! negint:
minus(zero) ! zero:

Let us assume that the symbols int, posint, negint, and zero have been de�ned as sorts
with the approximation ordering such that posint; zero; negint are pairwise incompatible
subsorts of the sort int (i.e., posint^ zero = ?; negint^ zero = ?; posint^negint = ?).
This is declared in LIFE as int := fposint; zero; negintg. Furthermore, we assume the
sort de�nition posint := fposodd; poseveng; i.e., posodd and poseven are subsorts of
posint and mutually incompatible.

The LIFE query Y = minus(X : poseven)? will return Y = negint. The sort poseven
of the actual parameter is incompatible with the sort negint of the formal parameter
of the �rst rule de�ning the function minus. Therefore, that rule is skipped. The sort
poseven is more speci�c than the sort posint of the formal parameter of the second rule.
Hence, that rule is applicable and yields the result Y = negint.

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is
incompatible with the sort of the formal parameter of every rule de�ning minus.

Thus, in order to determine which of the rules, if any, de�ning the function in a
given functional expression will be applied, two tests are necessary:� verify whether the actual parameter is more speci�c than or equal to the formal

parameter;� verify whether the actual parameter is at all compatible with the formal parameter.
What happens if both of these tests fail? For example, consider the query consisting

of the conjunction:

Y = minus(X : int);X = minus(zero)?



Like Prolog, LIFE follows a left-to-right resolution strategy and examines the
equation Y = minus(X : int) �rst. However, both foregoing tests fail and deciding
which rule to use among those de�ning minus is inconclusive. Indeed, the sort int of the
actual parameter in that call is neither more speci�c than, nor incompatible with, the sort
negint of the �rst rule’s formal parameter. Therefore, the function call will residuate on
the variable X. This means that the functional evaluation is suspended pending more
information on X. The second goal in the query is treated next. There, it is found that
the actual parameter is incompatible with the �rst two rules and is the same as the last
rule’s. This allows reduction and binds X to zero. At this point, X has been instantiated
and therefore the residual equation pending on X can be reexamined. Again, as before,
a redex is found for the last rule and yields Y = zero.

The two tests above can in fact be worded in a more general setting. Viewing
data structures as constraints, \more speci�c" is simply a particular case of constraint
entailment. We will say that a constraint disentails another whenever their conjunction
is unsatis�able; or, equivalently, whenever it entails its negation. In particular, �rst-order
matching is deciding entailment between constraints consisting of equations over �rst-
order terms. Similarly, deciding uni�ability of �rst-order terms amounts to deciding
\compatibility" in the sense used informally above.

The suspension/resumption mechanism illustrated in our example is repeated each
time a residuated actual parameter becomes more instantiated from the context; i.e.,
through solving other parts of the query. Therefore, it is most bene�cial for a practical
algorithm testing entailment and disentailment to be incremental. This means that, upon
resumption, the test for the instantiated actual parameter builds upon partial results
obtained by the previous test. One outcome of the results presented in this paper is that
it is possible to build such a test; namely, an algorithm deciding simultaneously two
problems in an incremental manner|entailment and disentailment. The technique that
we have devised to do that is called relative simpli�cation of constraints [4].

We have organized this paper as follows. In Section 2, we review background on
our OSF formalism. This is for the sake of staying self-contained since its technical
notation and terminology is pervasive in this paper’s presentation. In Section 3, we
give rules for incrementally deciding entailment and disentailment of OSF constraints,
and we make explicit the effectuality of relative simpli�cation. In Section 4, we prove
the termination of the rules. In Section 5, we show the correctness and completeness
of these rules. Section 6 establishes the property of independence of negated OSF
constraints. Finally, we conclude in Section 7.

2 OSF Formalism

We introduce brie
y the OSF formalism terminology and notation that we use. For a
thorough investigation of these notions, the reader is referred to [5].

2.1 OSF algebras and OSF constraints

The building blocks of OSF algebras are sorts and features.
An order-sorted feature signature (or simply OSF signature) is a tuple hS;�;^;Fi

such that:



� S is a set of sorts containing the sorts > and ?;� � is a decidable partial order on S such that ? is the least and > is the greatest
element;� hS;�;^i is a lower semi-lattice (s ^ s0 is called the greatest common subsort of
sorts s and s0);� F is a set of feature symbols.
An OSF signature has the following interpretation. An OSF algebra over the

signature hS;�;^;Fi is a structure:A = h DA ; �sA�
s2S ; �`A�`2F i

such that:� DA is a non-empty set, called the domain of A (or, universe);� for each sort symbol s in S, sA is a subset of the domain; in particular, >A = DA
and ?A = ∅;� the greatest lower bound (GLB) operation on the sorts is interpreted as the
intersection; i.e., (s ^ s0)A = sA \ s0A for two sorts s and s0 in S.� for each feature ` inF , `A is a total unary function from the domain into the domain;
i.e., `A : DA 7! DA;
The notion of OSF algebra calls naturally for a corresponding notion of homomor-

phism preserving structure appropriately. Namely,

De�nition 1 OSF Homomorphism. An OSF algebra homomorphism 
 : A 7! B
between two OSF algebras A and B is a function 
 : DA 7! DB such that:� 
�`A(d)� = `B�
(d)� for all d 2 DA;� 
�sA� � sB.

It is straightforward to verify that OSF algebras together with OSF homomorphisms
form a category. We call this category OSF.

Let V be a countably in�nite set of variables.

De�nition 2 OSF Constraint. An atomic OSF constraint is one of:� X : s,� X
:= X0,� X:` := X0,

where X and X0 are variables in V, s is a sort in S, and ` is a feature in F . An OSF
constraint is a conjunction of atomic OSF constraints.

The set Var(�) of variables occurring in an OSF constraint � is de�ned in the
standard way. OSF constraints will always be considered equal if they are equal modulo
the commutativity, associativity and idempotence of conjunction \&." Therefore, a
constraint can also be formalized as the set consisting of its conjuncts. As usual, the
empty conjunction corresponds to the propositional constant interpreted as true.

Let A be an OSF algebra. We call Val(A) = f� : V 7! DAg the set of all possible
valuations in the interpretationA. The semantics of OSF constraints is straightforward.

Given A is OSF algebra, an OSF constraint � is satis�able in A, if there exists a
valuation � : V 7! DA such thatA; � j= �, where:



A; � j= X : s iff �(X) 2 sA;A; � j= X
:= Y iff �(X) = �(Y);A; � j= X:` := Y iff `A(�(X)) = �(Y);A; � j= � & �0 iff A; � j= � and A; � j= �0:

2.2  -Terms

De�nition 3  -Term. A  -term  is an expression of the form:

X : s(`1 )  1; . . . ; `n )  n)
where� X is a variable in V called the root of  ;� s is a sort different from ? in S;� `1; . . . ; `n are pairwise different features in F , n � 0;�  1; . . . ;  n are again  -terms; and,� no variable Y occurring in  is the root variable of more than one non-trivial  -term

(i.e., different than Y : >).

Note that the equation above includes n = 0 as a base case. That is, the simplest -terms are of the form X : s.
We can associate to a  -term  = X : s(`1 )  1; . . . ; `n )  n) the OSF constraint:�( ) = X : s & X:`1

:= Y1 & . . . & X:`n
:= Yn

& �( 1) & . . . & �( n)
where Y1; . . . ; Yn are the roots of 1; . . . ;  n, respectively. We say that the OSF constraint�( ) is obtained from dissolving the  -term  , and refer to the OSF constraint as the
dissolved  -term. We will often deliberately confuse a  -term  with its dissolved form�( ) and simply refer to �( ) simply as  .

Given the interpretation A, the denotation [[ ]]A;� under a valuation � : V 7! DA
of a  -term  with root X is given as:

[[ ]]A;� = fd 2 DA j �(X) = d; A; � j=  g:
Note that this is either the singleton f�(X)g or the empty set.

The type-as-set denotation of a  -term  is de�ned as the set of domain elements:

[[ ]]A = [�2Val(A)[[ ]]A;�:
This amounts to saying that:

[[ ]]A = fd 2 DA j there exists � 2 Val(A) such that�(Z) = d; and A; � j= 9X Z :  g



where Z is a new variable not occurring in  , X = Var( ), Z :  stands for Z
:= X &  ,

and X 2 X is  ’s root variable.
A  -term  with root X corresponds to a unique rooted graph g which is the direct

translation of the constraint  together with an indication of the root. The nodes of
g are exactly the variables of  . A node Z is labeled by the sort s if the conjunction contains a non-trivial sort constraint Z : s, and by the sort >, otherwise. For every
feature constraint Y:` := Z the graph g has a directed edge (Y; Z) which is labeled by the
feature `. The root of g is the node X. Clearly, g is the natural graphical representation
of  .

2.3 Syntactic interpretations

Among all OSF algebras, there are those whose domain elements are concrete data
structures. We call these syntactic interpretations. We will now present three important
examples obtained directly from the syntactic expressions of  -terms. They turn out to
be canonical interpretations for OSF constraints.1

The most immediate syntactic OSF interpretation is the OSF algebra 	 of  -terms.
The domain of 	 is the set of all  -terms, up to graph representation. That is, we identify -terms as values of 	 if they are represented by the same graph. For example, the two -terms Y : s(`1 ) X : s0; `2 ) X) and Y : s(`1 ) X; `2 ) X : s0) clearly correspond
to the same object. Indeed, they have the same OSF graph representation.

A sort s 2 S is interpreted as:

s	 = f 2 D	 j Sort(Root( )) � sg;
where Sort(Root( )) is the root sort of the graph of  . A feature ` 2 F is interpreted
as a function `	 : D	 7! D	 as follows. Let  be a  -term and g its graph. If (X; Y)
is the edge of g labeled by `, then `	 (g) is the  -term represented by the maximally
connected subgraph g0 of g rooted at the node Y. That is, g0 is obtained by removing all
nodes and edges which are not reachable by a directed path from the node Y.

If X does not have the feature `, i.e., there is no outgoing edge from the root of g
labeled `, then `	 is the  -term Z`; : >, for a new variable Z`; uniquely determined
by the feature ` and the  -term  .

For example, taking  = X : >(`1 ) Y : s; `2 ) X), we have `	1 ( ) = Y : s,`	2 ( ) =  , and `	3 ( ) = Z`3; : >.
We obtain two other examples of OSF algebras when we factorize the  -term

domain by further identifying values. The �rst one identi�es two  -terms which are
equal up to variable renaming. The obtained domain obviously spans an OSF algebra.
We call this OSF algebra 	0.

The second one is obtained from 	0 by further identifying two  -terms if their
(possibly in�nite) tree unfoldings are equal. A tree unfolding is obtained from a  -term
by associating a unique node to every feature path. It is well known that a rooted
directed graph represents a unique rational tree [8]. In our case, we obtain trees whose
nodes are labeled by sorts and whose edges are labeled by features. We call these

1 If an OSF constraint is satis�able in some interpretation, then it is also satis�able in all
canonical interpretations.



(rational) OSF trees. It is again clear that the set of all OSF trees spans an OSF algebraT .2

Formally, OSF algebras can also be introduced as logical structures, namely models
providing interpretations for the sort symbols as unary predicates and the feature
symbols as unary functions, which satisfy the Sort Axiom saying, for all sorts s and s0,

X : s & X : s0 ! X : s ^ s0:
Furthermore, both 	0 and T satisfy a Constructibility Axiom stating essentially the
satis�ability of any OSF constraint � coming from dissolving a  -term  . More
precisely, if X = Var(�) and, for i = 1; . . . ; n, Xi:`i

:= Y 62 � for any variable Y, and
Yi 62 Var(�), and Xi 2 X , then this axiom states the validity of:8Y1: . . .8Yn: 9X : � & X1:`1

:= Y1 & . . . & Xn:`n
:= Yn:

The constructibilityaxiom is a generalization of the axiom of functionalitywhich is valid
for �rst-order terms. Namely, the axiom which guarantees that, given a constructor
symbol f of rank n, an individual X = f (Y1; . . . ; Yn) exists if individuals Yi exist,
i = 1; . . . ; n. Formally, taking � = X : f ,8Y1: . . .8Yn: 9X: X : f & X:1 := Y1 & . . . & X:n := Yn:
The form we give for constructibility is indeed more general than plain functionality
since it states the existence of something which is not valid for �rst-order terms; e.g.,
self-referential individuals. For example, 9X: X:` := X is obtained as an instance of our
axiom by taking n = 0 and � = X:` := X.

2.4 OSF uni�cation

We describe next how to determine whether an OSF constraint � is consistent; i.e., if it
is satis�able in some OSF algebra A|and, therefore, in particular in 	 . Uni�cation of
two  -terms reduces to this problem.

De�nition 4 Solved OSF Constraints. An OSF constraint � is called solved if for
every variable X, � contains:� at most one sort constraint of the form X : s, with ? < s;� at most one feature constraint of the form X:` := Y for each `; and,� no other occurrence of the variable X if it contains the equality constraint X

:= Y.

In [5], we show that an OSF constraint in solved form is always satis�able. Now,
by De�nition 3, the OSF constraint obtained as the dissolved form of any  -term  
is de facto in solved form.3 Hence, such a constraint is always satis�able. It is so, in
particular, in the canonical interpretation 	 with, interestingly enough, the valuation
that assigns to each variable X in  the value in D	 that is the very  -term rooted in X
in  . For this reason, a  -term can also be seen as a variable substitution.

Given an OSF constraint �, it can be normalized by choosing non-deterministically
and applying any applicable rule among the transformations rules shown in Figure 1



Feature Decomposition:

(B.1)
 & U:` := V & U:` := W & U:` := V & W

:= V

Sort Intersection:

(B.2)
 & U : s & U : s0 & U : s ^ s0

Variable Elimination:

(B.3)
 & U

:= V [V=U] & U
:= V

if U 2 Var( ) and U 6= V

Inconsistent Sort:

(B.4)
 & X : ??

Variable Clean-up:

(B.5)
 & U

:= U 
Fig. 1. Basic simpli�cation

until none applies. A rule transforms the numerator into the denominator. The expression�[X=Y] stands for the formula obtained from � after replacing all occurrences of Y by
X.

Theorem 5 OSF Constraint Normalization. The transformation system of Figure 1
is solution-preserving, �nite terminating, and con
uent (modulo variable renaming).
Furthermore, it always yields a normal form that is either the false constraint? or an
OSF constraint in solved form.

In our case, the constraint� to be normalized will be of the form 1 &  2 & X1
:= X2;

i.e., the conjunction of the dissolved  -terms  1 and  2 together with an equation
identifying their root variables X1 and X2. If � normalizes to the false constraint, then
the two  -terms are non-uni�able. Otherwise, the resulting solved OSF constraint is a

2 T is essentially the feature tree structure of [6] and [7, 13]. The difference lies in our using
partially-ordered sorts and total, as opposed to partial, features.

3 More precisely, this is true if we forget super
uous trivial sort constraints of the form X : >.



conjunction of equality constraints and of the dissolved form of some  -term. This  -
term is the most general uni�er of  1 and  2, up to variable renaming. We shall see that
this  -term has two equivalent order-theoretic characterizations (cf., Propositions 11
and 12).

2.5 OSF orderings and semantic transparency

In this section, we introduce the notion of endomorphic approximation which captures
precisely and elegantly object inheritance. We also show how it relates to the logic and
type views, capturing semantically the essence of constraint entailment.

Endomorphisms on a given OSF algebra A, i.e., homomorphisms from A to A,
induce a natural partial ordering.

De�nition 6 Endomorphic Approximation. An approximation preorder vA is de-
�ned such that, for two elements d and e in DA, d approximates e if and only if e is an
endomorphic image of d. Formally, d vA e iff 
(d) = e for some endomorphism 
 :A 7! A:
We shall omit subscripting vA and write v when A = 	 . Notice that this ordering
on  -terms as values of the domain of 	 translates into an information-theoretic
approximation ordering on  -terms as types.

We note that endomorphisms on 	 are graph homomorphisms with the additional
sort-compatibility property. A node labeled with sort s is always mapped into a node
labeled with s or a subsort of s. An edge labeled with a feature is mapped into an
edge labeled with the same feature. Thus, endomorphic approximation captures exactly
object-oriented class inheritance. Indeed, if an attribute is present in a class, then it is
also present in a subclass with a sort that is the same or re�ned. Since features are total
functions, this also takes care of introducing a new attribute in a subclass: it re�nes>. Note also, that the restriction of 
 to the set of nodes de�nes a variable binding; it
corresponds to the notion of a matching substitution for �rst-order terms.

The following fact was established in [5].

Proposition 7  -Terms as Filters. The denotation of a  -term in 	 is the set of all -terms it approximates; i.e.,

[[ ]]	 = f 0 2 D	 j  v  0g:
The next ordering is the ordering on  -terms that expresses that one  -term is

\more speci�c than" another one.

De�nition 8  -Term Subsumption. A  -term  is subsumed by a  -term  0 if and
only if the denotation of  is contained in that of  0 in all interpretations. Formally, �  0 iff [[ ]]A � [[ 0]]A
for all OSF algebras A.

In fact, it is suf�cient to limit the above statement to the OSF algebra 	 only; i.e.,
[[ ]]	 � [[ 0]]	 .

The next and last ordering is a logical ordering on  -terms. We state it here in less
general terms than in [5].



De�nition 9  -Term Entailment. A  -term  entails a  -term  0 if and only if, as
constraints,  implies the conjunction of  0 and X

:= X0; more precisely, �  0 iff j=  ! 9U (X := X0 &  0)
where X, X0 are the roots of  and  0 and U = Var( 0).
It is again suf�cient to state the validity of the implication in the OSF algebra 	 only
(namely, using j=	 ). This is not true in the more general wording and holds here only
because the constraints are obtained by dissolving  -terms and their root variables are
bound together.

Proposition 10 Semantic Transparency of Orderings. The following are equivalent:�  v  0  approximates  0;�  0 �   0 is a subtype of  ;�  0 �   entails  0;� [[ ]]	 � [[ 0]]	 the set of  -terms �ltered by  is contained in that �ltered by  0.
The following two propositions are straightforward. Let  1 and  2 be two  -terms

with variables renamed apart; i.e., such that Var( 1) \ Var( 2) = ∅. Let X1 and X2
be their respective root variables. Let � be the normal form of the OSF constraint 1 &  2 & X1

:= X2.

Proposition 11  -Term Uni�cation. The normal form � is the false constraint if and
only if [[ 1]]A \ [[ 2]]A = ∅, for all OSF algebras A. Otherwise, � is the conjunction
of equality constraints and of the dissolved version of some  -term  . This  -term is
the �-GLB of  1 and  2 up to variable renaming; i.e., [[ ]]A = [[ 1]]A \ [[ 2]]A.

Proposition 12 v-LUB of two  -terms. The  -term  above is approximated by both 1 and  2 and is the least  -term for v (i.e., approximating all other ones) with this
property.

3 Proving OSF Guards

In the following, we use � as the context formula. It is assumed to be an OSF-constraint
in solved form, although not necessarily coming from dissolving a single  -term. The
variables in � are global. We shall use X to designate the set of global variables Var(�)
and the letters X, Y, Z, . . . , for variables in X . We use  , a dissolved  -term, as the
guard formula. The variables in  are local to  ; i.e., Var(�) \ Var( ) = ∅. We shall
use U to designate the set of local variables Var( ) and the letters U, V, W, . . . , for
variables in U . The letter U will always designate the root variable of  . We also refer
to � as the actual parameter, and to  as the formal parameter. By extension, we will
often use the quali�ers global/local, actual/formal, and context/guard, with all syntactic
entities; e.g., variables, formulae, constraints, or sorts.

We investigate a proof system which decides two problems simultaneously:� the validity of 8X � �! 9U : ( & U
:= X) �;� the unsatis�ability of � &  & U

:= X.



The �rst test is called a test for entailment of the guard by the context, and the second,
a test for disentailment. This second test is equivalent to testing the validity of the
implication 8X � �! :9U : ( & U

:= X) �.
Since both tests amount to deciding whether the context implies the guard or its

negation, all local variables are existentially quanti�ed and all global variables are
universally quanti�ed.

The relative-simpli�cation system for OSF constraints is given by the rules in
Figures 2, 3, and 4. An OSF constraint  simpli�es to  0 relatively to � by a

Feature Decomposition:

(F.1)
 & U:` := V & U:` := W & U:` := V & W

:= V

Relative Feature Decomposition:

(F.2)
 & U

:= X & U:` := V & U
:= X & V

:= Y
if X:` := Y 2 �

Relative Feature Equality:

(F.3)
 & U

:= X1 & U
:= X2 & V

:= Y1 & U
:= X1 & U

:= X2 & V
:= Y1 & V

:= Y2

if X1:` := Y1 2 �, X2:` := Y2 2 �
and V

:= Y2 =2  
Variable Introduction:

(F.4)
 & U

:= X1 & U
:= X2 & U

:= X1 & U
:= X2 & V

:= Y1 & V
:= Y2

if X1:` := Y1 2 �, X2:` := Y2 2 �
and Y1 =2 Var( ) and Y2 =2 Var( )
where V is a new variable

Fig. 2. Simpli�cation relatively to �: Features

simpli�cation rule � if   0 is an instance of � and the applicability condition (on � and
on  ) is satis�ed. We say that  simpli�es to  0 relatively to � if it does so in a �nite
number of steps.

The relative-simpli�cation system preserves an important invariant property: a
global variable never appears on the left of a variable equality constraint in the formula
being simpli�ed. Thus, an equality U

:= X is a directed relation binding the local
variable U to the global variable X. Furthermore, a global variable is never eliminated
by a local one, or vice versa.



Sort Intersection:

(S.1)
 & U : s & U : s0 & U : s ^ s0

Sort Containment:

(S.2)
 & U

:= X & U : s & U
:= X

if X : s0 2 �, and s0 � s

Sort Re�nement:

(S.3)
 & U

:= X & U : s & U
:= X & U : s ^ s0 if X : s0 2 �, and s ^ s0 < s

Relative Sort Intersection:

(S.4)
 & U

:= X & U
:= X0 & U

:= X & U
:= X0 & U : s ^ s0 if X : s 2 �, X0 : s0 2 �,

s ^ s0 < s, s ^ s0 < s0,
and U : s00 =2  , for any sort s00

Sort Inconsistency:

(S.5)
 & U : ??

Fig. 3. Simpli�cation relatively to �: Sorts

A set of bindings Ui
:= Xi, i = 1; . . . ; n is a functional binding if all the variables Ui

are mutually distinct.
The effectuality of the relative-simpli�cation system is summed up in the following

statement:

Effectuality of Relative-Simpli�cation The solved OSF constraint � entails
(resp., disentails) the OSF constraint 9U: (U := X &  ) if and only if the
normal form  0 of  & U

:= X relatively to � is a conjunction of equations
making up a functional binding (resp., is the false constraint  0 = ?).

There are two technical remarks to be made. Firstly, observe that in our formulation
of the entailment/disentailment problem, the implication contains only one equality
U

:= X binding only one global variable. However, this is not a restriction. Equations
U1

:= X1; . . . ;Un
:= Xn can be equivalently replaced by adding X1

:= X:1 & . . . & Xn
:=



Relative Variable Elimination:

(E.1)
 & U

:= X & V
:= X [U=V] & U

:= X & V
:= X

if V 2 Var( ), V
:= X =2  ,

and U 6= V

Equation Entailment:

(E.2)
 & U

:= X & U
:= Y & U

:= X
if X = Y or if X

:= Y 2 �.

Fig. 4. Simpli�cation relatively to �: Equations

X:n to the context � and U1
:= U:1 & . . . & Un

:= U:n & U
:= X to  , where X and U

are new. That is, one obtains the conjunction of one equality U
:= X and a guard which,

again, is a dissolved  -term.
Secondly, the fact that  is a dissolved  -term rooted in U ensures that the test of

entailment of  & U
:= X by � does not depend on whether the implication holds in all

OSF interpretations, or only in 	 , or T . This is not necessarily so if U is not the root of . Indeed, let us assume that U is not the root of  ; for example, take  to be V:` := U.
Clearly, while 8X

�> ! 9U9V ( & U
:= X)� holds in 	 and T , it does not hold in

all OSF algebras where it is not guaranteed that every element is the `-image of some
other element. In 	 (and T ), this is the case since any element X is the `-image of at
least one element; namely, >(`) X).

Effectuality of relative-simpli�cation is the central result of this section. We now
proceed through the technical details aimed at establishing its claim in the form of two
theorems: Theorem 22 and Theorem 24.

4 Termination of relative simpli�cation

For the purpose of showing that the relative simpli�cation rules always terminate, we
introduce an additional set of rules shown in Figure 5 extending basic simpli�cation.
These rules are not meant to be used in the effective operation of basic simpli�cation,
but only serve in our proof argument. The idea is that relative simpli�cation of a guard  
relatively to a context � can be \simulated" by normalizing the formula� &  & U

:= X
using basic simpli�cation (Figure 1) together with the rules of Figure 5. It is not a real
simulation, however, as Rules (B.1){(B.5) have for side effect to destroy the context.
The point is that one application of a relative simpli�cation rule can be made to
correspond to at least one application of one of Rules (B.1){(B.5), (X.1){(X.3). Since
this latter system can be shown to terminate, then so can relative simpli�cation.

Rules (X.1){(X.3) perform essentially the same work as Rules (B.1) and (B.2)
except that they do no erase parts of the formula. In Rule (X.1), we denote by � :=



the re
exive, symmetric and transitive closure of
:= (that is, the equivalence relation

on the variables occurring in the constraint which is generated by the
:=-pairs between

variables in the constraint).

Extended Feature Decomposition:

(X.1)
 & U:` := U0 & U:` := U00 & U:` := U0 & U:` := U00 & U00 := U0 if U0 6� := U00

Extended Sort Intersection 1:

(X.2)
 & U : s & U : s0 & U : s & U : s ^ s0 if s ^ s0 < s00 for any s00

such that U : s00 2  
Extended Sort Intersection 2:

(X.3)
 & U : s & U : s0 & U : s & U : s0 & U : s ^ s0 if s ^ s0 < s00 for any s00

such that U : s00 2  
Fig. 5. Rules extending basic simpli�cation

Lemma 13. The extended basic-simpli�cation rules (B.1){(B.5), (X.1){(X.3) de�ne
equivalence transformations; furthermore, they are terminating.

Proof. The �rst statement is clear. The proof of the second statement is an extension
of the termination proof of the basic simpli�cation rules (B.1){(B.5) from [5]: (X.1)
can be applied only a �nite number of times, since the number of equivalence classes
partitioning the �nite set of variables occurring in the constraint which is to be simpli�ed
decreases by 1 with each application. (X.2) and (X.3) can be applied only a �nite number
of times, since they can be applied at most once for every sort occurring in the constraint
which is to be simpli�ed.

Lemma 14. Let  & U
:= X simplify to  0 relatively to � by a relative-simpli�cation

step not using Rule (F.4). Then, � &  & X
:= U simpli�es to �0 &  00 by at most one

extended basic-simpli�cation step and a �nite number of variable elimination (B.3),
where  0 and  00 are equal up to variable renaming.

Proof. It can be seen that each relative simpli�cation rule, except for (F.4), corresponds
to one or several extended basic-simpli�cation rules. Rules (F.1){(F.3) correspond to
Rules (B.1) and (X.1). Rules (S.1){(S.4) correspond to Rules (B.2), (X.2) and (X.3).



Rules (E.1){(E.2) correspond to Rule (B.3). This, and the fact that extended basic-
simpli�cation rules are equivalence transformations, allow us to conclude.

Lemma 15. Let  simplify to 0 of the form & U1
:= X1 & U1

:= X2 by an application
of Rule (F.4) relatively to �. Then,  & U1

:= X1 simpli�es to the same constraint  0 by
an application of Rule (F.3) relatively to �.

Proposition 16. The relative-simpli�cation rules are terminating.

Proof. This is proved by induction on n, using Lemma 14 and Lemma 15. For every
relative-simpli�cation chain  1 & U1

:= X1; . . . ;  n & Un
:= Xn relatively to �, there

exists an extended-basic simpli�cation chain of length n + k, where k � 0. This chain
starts with the basic constraint � &  & X1

:= U1 & X
:= U, where X

:= U stands
for the equations we have added so that each global variable X is bound to some local
variable U (which, if necessary, is chosen new).

Since, according to Lemma 13, extended-basic-simpli�cation chains are �nite, so
are relative-simpli�cation chains.

5 Correctness and completeness

We �rst note another consequence of the lemmata of the last section. Let V stand for
the new local variables introduced by Rule (F.4).

Proposition 17. Let  & U
:= X simplify to  0 relatively to �. Then, � &  & U

:= X
and 9V: (� &  0) are equivalent.

Proof. Let us �rst assume that  & U
:= X simpli�es to  0 relatively to �, not

using Rule (F.4). Then, � &  & U
:= X and � &  0 are equivalent by Lemma 13

and Lemma 14. Let  & U
:= X simplify to  & U

:= X & V
:= X1 & V

:= X2
relatively to �, by an application of Rule (F.4). Clearly, � &  & U

:= X and� & 9V: ( & U
:= X & V

:= X1) are equivalent. Thus, with Lemma 15, we can apply
the �rst part of the proof on  & U

:= X & V
:= X1.

The next corollary states a property which is important for showing that relative
simpli�cation can be used for proving entailment, the invariance property.

Corollary 18 Invariance of Relative-Simpli�cation. If  & U
:= X simpli�es to  0

relatively to �, then 9U : (� &  & U
:= X) and 9U9V: (� &  0) are equivalent.

It is helpful to list systematically the normal-form properties of the relative-simpli�cation
system.

Proposition 19. The constraint  is in normal form relatively to � iff the following
conditions are satis�ed:�  is in solved-form;� a global variable X may occur in  only in the form

:= X;� if X
:= 2 �, then X does not occur in  ;



� if V
:= X 2  , and

:= X:` 2 �, then
:= V:` 62  ;� if V

:= X 2  , and X : s 2 �, and V : s0 2  , then s0 < s;� if fV
:= X;V := Yg �  , and fX0 := X:`; Y0 := Y:`g � �, then fW

:= X0;W := Y0g � , for some variable W;� if fV
:= X;V := Yg �  , and fX : s1; Y : s2g � �, then V : s 2  for some sort s

such that s � s1 and s � s2.

Proof. By inspection of the relative-simpli�cation rules.

Proposition 20. Let  0 be a normal form of  & U
:= X relatively to �. Let �0 be

the constraint obtained from � eliminating all redundancies according to the rules of
Figure 6, and removing bindings V

:= of new variables introduced by (F.4). Then, the
constraint �0 &  0 is a solved-form of the constraint � &  & U

:= X, up to variable
renaming.

Redundant Sort Elimination:

(R.1)
� & X : s� if U

:= X 2  , and
U : s0 2  for some s0 � s

Redundant Feature Elimination:

(R.2)
� & X01 := X1:` & X02 := X2:`� & X01 := X1:` if U

:= X1 2  , U
:= X2 2  

Entailed Sort Redundancy Elimination:

(R.3)
� & X1 : s & X2 : s� & X1 : s

if U
:= X1 2  , U

:= X2 2  
Fig. 6. Redundancy elimination rules

Proof. According to Proposition 17, � &  & U
:= X is equivalent to 9V: � &  0,

where V stands for the new variables. According to the last three conditions of
Proposition 19, Rules (R.1), (R.2) or (R.3) perform equivalence transformations. Thus,
if applications of these rules modify �0 to �00, then �0 &  0 is equivalent to �00 &  0.

According to the �rst four conditions of Proposition 19, �00 &  0 is in solved-form
up to variable eliminations via Rule (B.3). More precisely, these variable eliminations



are applications of Rule (B.3) using new equations of the form V
:= X introduced

by Rule (F.4). They produce possibly equations of the form X
:= Y between global

variables; then, further variable eliminations consist of applications of Rule (B.3) using
these new equations. As a last step, these new equations are removed in order to obtain a
constraint which is exactly equivalent to � &  & U

:= X, and not just up to existential
quanti�cation of new variables.

Corollary 21. If the normal form of  & U
:= X relatively to � is not ?, then� &  & U

:= X is satis�able.

Proof. In [5] we showed that a constraint is satis�able if and only if it has a solved-form;
that is, its basic normal form is different from ?. The statement then follows from
Proposition 20.

Theorem 22 Disentailment. Let  0 be a normal form of  & U
:= X relatively to �.

Then, � disentails 9U : ( & U
:= X) if and only if  0 = ?.

Proof. If  0 = ?, then 8X (�! :9U9V:  0) is valid. From Corollary 18, it follows
that 8X (� ! :9U :  & U

:= X) is valid, too. If  0 6= ?, then Corollary 21 can be
applied.

Proposition 23. If the normal form 0 of & U
:= X relatively to� is not a conjunction

of equations representing a functional binding, then � & :9U : ( & U
:= X) is

satis�able.

Proof. The assumption on the form of  0 means that one of the three following cases
is true, for some V 2 Var( 0) bound to some X 2 Var(�); i.e., V

:= X 2  0.
1.  0 contains a sort constraint on V; say, V : s; or,
2.  0 contains two equations on V; say, V

:= X & V
:= Y; or,

3.  0 contains a feature constraint on V, say, V:` := W.

For each case, we can �nd a constraint �0 such that � & �0 is satis�able and disentails 0. Then, � & �0 also disentails9U : ( & U
:= X); i.e., � & �0 ! :9U: ( & U

:= X)
is valid. Clearly, this is suf�cient to show that � & :9U : ( & U

:= X) is satis�able.
(1) V : s 2  0; then, according to the third condition of Proposition 19, � contains

either no sort constraint on X or one of the form X : s0 where s < s0. Thus, we set�0 = X : s00, in the �rst case, for some sort s00 incompatible with s; i.e., such that
s ^ s00 = ?. In the second case, we choose s00 such that s ^ s00 = ? and s00 � s0.

(2) V
:= X & V

:= Y 2  0; then, either V : s 2  0 and we are in Case (2), or,
according to the last condition of Proposition 19, at most one of X and Y is sorted in �.
If Y : s 2 �, we set �0 = X : s0 for some sort s0 such that s ^ s0 = ?. If none of X and Y
is sorted in �, we set �0 = Y : s & X : s0 for some sorts s; s0 such that s ^ s0 = ?.

(3) V:`1
:= V1 2  0; then, � contains no feature constraint X:`1

:= , according to the
fourth condition of Proposition 19. Without loss of generality, we can assume that does



not contain redundant conjuncts.4 There exists a sort s such that  contains a conjunct
of the form: V:`1

:= V1 & V1:`2
:= V2 & . . . & Vn�1:`n

:= Vn & Vn : s, for some n � 1.
Thus, we set �0 = X:`1

:= X1 & X1:`2
:= X2 & . . . & Xn�1:`n

:= Xn & Xn : s0, for some
new variables X1; . . . ;Xn and some sort s0 such that s ^ s0 = ?.

Theorem 24 Entailment. Let  0 be a normal form of  relatively to �. Then, � entails9U : ( & U
:= X) if and only if  0 is a functional binding. Moreover, � &  0 is a

solved OSF constraint.

Proof. If  0 is a conjunction of equations representing a functional binding, then9U9V:  0 is valid; thus, so is �! 9U9V:  0. By invariance of relative simpli�cation
(Corollary 18), it follows that �! 9U :  is valid, too.

If 0 has a different form then, either  0 = ?, or  0 contains conjuncts that are not a
functional binding. The fact that �! 9U :  is not valid is trivial in the �rst case. In the
other case, since the context � is always assumed in solved form and, thus, satis�able,
then it follows from Proposition 23.

Corollary 25. Let  0 be the relative-simpli�cation normal form of  & U
:= X

relatively to �. Then, the context entails the guard if and only if the conjunction � &  0
is the solved-form of the conjunction � &  & U

:= X.

Proof. This is an immediate consequence of Theorem 24 and Proposition 20.

6 Independence

The following theorem states that the OSF constraint system has the independence
property [10]. It is well-known that in any constraint system with this property it
is possible to solve constraints which are conjunctions of constraints and negated
constraints by testing entailment. Namely, � & :9U1 1 & . . .:9Un n is satis�able if
and only if � does not entail 9Ui:  i, for every i = 1; . . . ; n. Here 9Ui abbreviates the
existential quanti�cation of variables in Var( i)� Var(�).

Clearly, � entails 9Ui:  i if and only if � entails 9Ui9Ui:  i[Ui=Xi] & Ui
:= Xi,

where we introduce a new variable Ui for every Xi 2 Var(�) \ Var( i). Hence, given
that the independence property holds, we can use the relative-simpli�cation algorithm
in order to check satis�ability of conjunctions of positive and negative OSF constraints.

For the formulation of the theorem, let us make a few assumptions that do
not incur any loss of generality. First, we assume that Ui = Var( i), Ui 2 Ui,
and Var(�) \ Var( i) = ∅. Second, since they correspond to different existential
quanti�cation scopes, we will assume Ui \ Uj = ∅ for i 6= j. Finally, we again assume
that  i does not contain redundant constraints (cf., Footnote 4).

4 That is, we assume that every variable in  has at least one sort constraint and that redundant
constraints in  are removed. A redundant constraint in  is one of the form X:` := Y & Y : >
where Y does not occur elsewhere in  . Since we interpret features as total functions, this is
not a proper restriction: redundant constraints can be moved into the functional expression or
the body of the guarded clause without changing the declarative or the operational semantics.
On the other hand, if this assumption is ful�lled, then the entailment of  & U

:= X by � does
not depend on whether features are interpreted as total or partial functions.



Theorem 26 Independence. A constraint � entails the disjunction of the constraints9Ui: ( i & Ui
:= Xi), for i = 1; . . . ; k, if and only if it entails one of them.

Proof. The if-direction is trivial. It is suf�cient to show that if�& :9Ui: ( i & Ui
:= Xi)

is satis�able for every i, then � &
V

i=1;...;k :9Ui: ( i & Ui
:= X) is satis�able.

Extending the proof technique of Proposition 23, we will �nd a constraint �0 such
that � & �0 is satis�able and disentails  0i , for all i = 1; . . . ; k. As a consequence,� & �0 also disentails 9Ui: ( i & Ui

:= Xi). That is, � & �0 ! :9Ui: ( i & Ui
:= Xi)

is valid. Clearly, this shows that � &
V

i=1;...;k :9Ui:  i & Ui
:= X is satis�able.

According to Theorem 24, if � & :9Ui: ( i & Ui
:= Xi) is satis�able, then  0i ,

the normal form of  i & Ui
:= Xi relatively to � is not a conjunction of equations

representing a functional binding.
Thus, one of the three following cases is true, for some Vi 2 Var( 0i ) bound to some

Xi 2 Var(�); i.e., Vi
:= Xi 2  0i :

1.  0i contains a sort constraint on Vi; say, Vi : si; or,
2.  0i contains two equations on Vi; say, Vi

:= Xi & Vi
:= Yi;

3.  0i contains a feature constraint on Vi, say, Vi:`i
:= Wi.

(1) If Vi : si 2  0i , then � contains either no sort constraint on Xi or one of the form
Xi : s0i where si < s0i , according to the third condition of Proposition 19. Let Uij

:= Xi,
for ij = 1; . . . ;m, be the family of all equations occurring in the disjuncts binding a
local variable Uij to that same global variable Xi. We add to � the sort constraint Xi : s00i
where s00i is some sort which is incompatible with those in the sort constraints Uij : sij ,
and, in case Xi : s0i 2 �, is furthermore a subsort of s0i , s00i � s0i .

(2) If Vi
:= Xi & Vi

:= Yi 2  0i , and Vi : si 62  0i (otherwise we are in Case (2)), then
we add to �0 the conjuncts Xi:`i

:= Zi & Zi 2 s & Yi:`i
:= Z0i & Z0i 2 s0. Here s and s0 are

two incompatible sorts, and the `i’s are pairwise different features which do not occur
in � and  i, for i = 1; . . . ; k.

(3) Finally, we consider the set I of all indices i, i = 1; . . . ; k, for which Case (3), but
neither Case (1) nor Case (2) applies. Thus, for i 2 I,  0i contains a feature constraint
of the form Vi:`i

:= V1
i . According to our assumption this constraint is not a redundant

conjunct; i.e., there exists a sort si such that  i contains, in fact, a conjunct of the form:

Vi:`i
:= V1

i & V1
i :`2

i
:= V2

i & . . . & Vn�1
i :`n

i
:= Vn

i & Vn
i : si;

for some n � 1:We add to �0 the conjunct:

Xi:`1
i
:= X1

i & X1
i :`2

i
:= X2

i & . . . & Xn�1
i :`n

i
:= Xn

i & Xn
i : s0i ;

for some new variables X1
i ; . . . ;Xn

i and for some sort s0i incompatible with si.
If there are several disjuncts  0ij with exactly the same chain of feature constraints

starting in a variable bound to the same global variable, then s0i must be chosen to be
incompatible with the sorts in all of these chains. More precisely, if, for ij = 1; . . . ;m,
the disjunct  0ij contains the conjunct:

Vij :`i
:= V1

ij & V1
ij :`2

i
:= V2

ij & . . . & Vn�1
ij :`n

i
:= Vn

ij & Vn
ij : sij ;

then s0i is chosen as some sort such that sij ^ s0i = ? for all ij, ij = 1; . . . ;m.



7 Conclusion

We have overviewed in detail a complete and correct system for deciding entailment
and disentailment of constraints over order-sorted feature structures. One motivation for
this system is parameter-passing for functions in LIFE, but it is general and relevant to
all concurrent constraint languages. We used a technique of relative simpli�cation [4]
which amounts to normalizing a constraint in the context of another. This yields an
incremental system with the additional bene�t of enjoying independence of negated
constraints.

Further work extending this should be to generalize our scheme to so-called deep
guards over OSF structures whereby guards are not limited to plain OSF constraints
but may also contain relational atoms de�ned by clauses. This is particularly relevant
to LIFE in order to explain matching over objects with attached relational constraints.
This study in currently under way and will be reported soon.
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