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Abstract. LIFE uses matching on order-sorted feature structures for passing
argumentsto functions. As opposed to unication which amountsto normalizing
a conjunction of constraints, solving a matching problem consists of deciding
whether a constraint (guard) or its negation are entailed by the context. We
give a complete and consistent set of rules for entailment and disentailment
of order-sorted feature constraints. These rules are directly usable for relative
simplication, ageneral proof-theoretic method for proving guardsin concurrent
constraint logic languages using guarded rules.

1 Introduction

LIFE [5] extends the computationa paradigm of Logic Programming in two essential
ways:
e using adatastructurericher than that provided by rst-order constructor terms; and,
o alowing interpretable functional expressions as bona de terms.
The rst extension is based on ¢-terms which are attributed partialy-ordered sorts
denoting sets of objects [1, 2]. In particular, ¢ -terms generalize rst-order constructor
termsintheir roleas datastructuresin that they are endowed with aunication operation
denoting type intersection.

The second extension deals with building into the unication operation a means
to reduce functional expressions using denitions of interpretable symbols over data
patterns. The basic insight is that unication is no longer seen as an atomic operation
by the resolution rule. Indeed, since unication amounts to normalizing a conjunction
of equations, and since this normalization process commutes with resolution, these
equations may be left in a normal form that is not a fully solved form. In particular,
if an eguation involves a functiona expression whose arguments are not sufciently
instantiated to match a deniens of the functionin question, it is simply left untouched.
Resolution may proceed until the arguments are proven to match a denition from the
accumulated constraints in the context [3]. This simple idea turns out invaluable in
practice.

This techniqueldelaying reduction and enforcing determinism by allowing only
equivalence reductionglis called residuation [3]. It does not have to be limited to
functions. Therefore, we explain it for the genera case of relations. Intuitively, the
arguments of arelation which are constrained by the guard are itsinput parameters and
correspond to the arguments of a function. This has been used as an implicit control



mechanism in general concurrent constraint 1ogic programming schemes; e.g., thelogic
of guarded Horn-clauses studied by Maher [11], Concurrent Constraint Programming
(CCP) [12], and Kerndl Andorra Prolog (KAP) [9]. These schemes are parameterized
with respect to an abstract classof constraint systems. Anincremental test for entailment
and disentailment between constraintsis needed for advanced control mechanisms such
as delaying, coroutining, synchronization, committed choice, and deep constraint
propagation. LIFE isformally an instance of thisscheme, namely a CLP language using
a constraint system based on order-sorted feature (OSF) structures [5]. It employs a
related, but limited, suspension strategy to enforce deterministic functional application.
Roughly, these systems are concurrent thanksto a new effective disciplinefor procedure
parameter-passing that can be described as \call-by-constraint-entailment" (as opposed
to Prolog’s call-by-unication).

Themost direct way to explain theissueiswith an example. In LIFE, one can dene
functionsas usual; say:

fact(0) — 1.
fact(N : int) — N« fact(N — 1).

More interesting is the possibility to compute with partial information. For example:

minus(negint) — posint.
minus(posint) — negint.
minus(zero) — zero.

Let us assume that the symbolsint, posint, negint, and zero have been dened as sorts
with the approximation ordering such that posint, zero, negint are pairwiseincompatible
subsortsof thesort int (i.e., posint A zero = —, negint A zero = —, posint A negint = —).
Thisis declared in LIFE as int := {posint; zero; negint}. Furthermore, we assume the
sort denition posint := {posodd; poseven}; i.e., posodd and poseven are subsorts of
posint and mutually incompatible.

The LIFE query Y = minus(X : poseven)? will return Y = negint. The sort poseven
of the actual parameter is incompatible with the sort negint of the formal parameter
of the rst rule dening the function minus. Therefore, that rule is skipped. The sort
poseven is more specic than the sort posint of the formal parameter of the second rule.
Hence, that ruleis applicable and yieldstheresult Y = negint.

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is
incompatible with the sort of the formal parameter of every rule dening minus.

Thus, in order to determine which of the rules, if any, dening the function in a
given functional expression will be applied, two tests are necessary:

o verify whether the actual parameter is more specic than or equa to the formal
parameter;
o verify whether the actua parameter isat al compatible with the forma parameter.

What happens if both of these testsfail? For example, consider the query consisting
of the conjunction:

Y = minus(X : int), X = minus(zero)?



Like Prolog, LIFE follows a left-to-right resolution strategy and examines the
eguation Y = minus(X : int) rst. However, both foregoing tests fail and deciding
which ruleto use among those dening minusisinconclusive. Indeed, the sort int of the
actua parameter inthat call isneither more speci ¢ than, nor incompatiblewith, the sort
negint of therst rule’ sformal parameter. Therefore, the function call will residuate on
the variable X. This means that the functiona evaluation is suspended pending more
information on X. The second god in the query is treated next. There, it is found that
the actual parameter isincompatible with the rst two rules and is the same as the last
rule's. This allows reduction and binds X to zero. At thispoint, X has been instantiated
and therefore the residual equation pending on X can be reexamined. Again, as before,
aredex isfound for thelast ruleand yields Y = zero.

The two tests above can in fact be worded in a more genera setting. Viewing
data structures as constraints, \more specic" is simply a particular case of constraint
entailment. We will say that a constraint disentails another whenever their conjunction
isunsatisable; or, equivalently, whenever it entail sitsnegation. I n particul ar, rst-order
matching is deciding entailment between constraints consisting of eguations over rst-
order terms. Similarly, deciding uniability of rst-order terms amounts to deciding
\compatibility" in the sense used informally above.

The suspension/resumption mechanism illustrated in our example is repeated each
time a residuated actual parameter becomes more instantiated from the context; i.e.,
through solving other parts of the query. Therefore, it is most benecial for a practical
algorithmtesting entailment and disentailment to beincremental . Thismeans that, upon
resumption, the test for the instantiated actual parameter builds upon partia results
obtai ned by the previoustest. One outcome of the results presented in this paper is that
it is possible to build such a test; namely, an algorithm deciding simultaneously two
problemsin an incremental manner|entailment and disentai Iment. The technique that
we have devised to do that is called relative simplication of constraints [4].

We have organized this paper as follows. In Section 2, we review background on
our OSF formalism. This is for the sake of staying self-contained since its technical
notation and terminology is pervasive in this paper’s presentation. In Section 3, we
giverulesfor incrementally deciding entailment and disentailment of OSF constraints,
and we make explicit the effectuality of relative simplication. In Section 4, we prove
the termination of the rules. In Section 5, we show the correctness and completeness
of these rules. Section 6 establishes the property of independence of negated OSF
congtraints. Finally, we concludein Section 7.

2 OSF Formalism

We introduce briey the OSF formalism terminology and notation that we use. For a
thorough investigation of these notions, the reader isreferred to [5].

2.1 OSF algebrasand OSF constraints

The building blocks of OSF agebras are sorts and features.
An order-sorted feature signature (or simply OSF signature) isatuple (S, <, A, F)
such that:



S isaset of sortscontaining the sorts T and —;
e < isadecidable partial order on § such that — isthe least and T is the greatest
element;
(8, <, A) is alower semi-lattice (SA S is called the greatest common subsort of
sortssand s');
e F isaset of feature symbols.

An OSF signature has the following interpretation. An OS- algebra over the

signature (S, <, A, F) isastructure;

-’4:<DA’ (SA)seS’ (EA)zE]:>

such that:
o D* isanon-empty set, called the domain of A (or, universe);
o for each sort symbol sin S, s* isa subset of the domain; in particular, T4 = D4
and -4 =[J;
o the greatest lower bound (GLB) operation on the sorts is interpreted as the
intersection; i.e., (SA )4 = s* Ns“ fortwosortssand s in S.
o foreachfeature¢in F,¢* isatota unary functionfrom the domain intothe domain;
ie, (4 DA — D4
The notion of OSF agebra cals naturally for a corresponding notion of homomor-
phism preserving structure appropriately. Namely,

Denition 1 OSF Homomorphism. An OSF agebra homomorphism v : A — B
between two OSF algebras A and B isafunctiony : D* — D” such that:

o y(¢A(d)) = (8(v(d)) fordl d € D*;

o y(s4) C &

Itisstraightforward to verify that OSF algebras together with OSF homomorphisms
form a category. We call this category OSF.
Let VV be acountably innite set of variables.

Denition 2 OSF Constraint. An atomic OSF constraint is one of:

e X5,

e X=X,

o Xt4=X,
where X and X’ are variablesin V, sisasort in 8, and ¢ is afeature in F. An OSF
congtraint is a conjunction of atomic OSF constraints.

The set Var(¢) of varigbles occurring in an OSF constraint ¢ is dened in the
standard way. OSF constraintswill aways be considered equal if they are equal modulo
the commutativity, associativity and idempotence of conjunction \&." Therefore, a
congtraint can also be formalized as the set consisting of its conjuncts. As usud, the
empty conjunction corresponds to the propositional constant interpreted as true.

Let A bean OSF algebra We call Val(A) = {a : V — D*} the set of all possible
valuationsin theinterpretation .A. The semantics of OSF constraintsis straightforward.

Given A is OSF agebra, an OSF constraint ¢ is satisablein A, if there exists a
vauation o : V — D such that A, o |= ¢, where:



AakEX:s iff a(X)est
AaEX=Y iff afX)=aY);

A XL =Y iff A(a(X) = a(Y);
AakEé& ¢ iff Aak=gdandAalk ¢

22 -Terms

Denition3 ¢-Term. A ¢-term ¢ isan expression of the form:

X:s(ly = b1, ... b = thn)

where

e XisavariableinV cdled theroot of «;

e sisasort different from — in S;

o (1,..., ¢, areparwise different featuresin F, n > 0;

e 1,..., Yy &eagan ¢-terms; and,

¢ novariableY occurringin + istheroot variable of more than one non-trivia -term
(i.e, differentthan Y : T).

Note that the equation above includesn = 0 as a base case. That is, the simplest
y-terms are of theform X : s.
We can associateto ay-term ¢ = X : s(¢1 = 41, ..., €h = n) the OSF constraint:

P(1h) = X:S& Xl =Y1& ... & Xy =Y,
& ¢(v1) & ... & B(¢n)

whereYiy, ..., Yy aretherootsof ¢4, ..., ¥, respectively. We say that the OSF constraint
#(v) is obtained from dissolving the ¢-term ¢, and refer to the OSF constraint as the
dissolved ¢-term. We will often deliberately confuse av-term « with itsdissolved form
#(y) and simply refer to ¢ (1) simply as ¢.

Given the interpretation .4, the denotation [¢/]*'® under a valuation « : V — D*
of ay-term ¢ with root X isgiven as:

[¥]** ={de D* | a(X) =d, 4,a [ ¥}.

Note that thisis either the singleton {«(X)} or the empty set.
The type-as-set denotation of a-term v is dened as the set of domain elements:

1= J [t~

a€eVal(A)

Thisamountsto saying that:

[+]* = {d € D* | thereexists a € Val(.A) such that
a(Z)=d, and A0 | 3X Z: )



where Z isanew variablenot occurringin ¢, X = Var(vy), Z : ¢ standsforZ = X & ¢,
and X € X isy’sroot variable.

A +-term « with root X corresponds to a unique rooted graph g which isthe direct
trandation of the constraint ¢ together with an indication of the root. The nodes of
g are exactly the variables of «. A node Z islabeled by the sort s if the conjunction
1 contains a non-trivial sort constraint Z : s, and by the sort T, otherwise. For every
feature constraint Y.¢ = Z thegraph g hasadirected edge (Y, Z) whichislabeled by the
feature ¢. The root of g isthe node X. Clearly, g isthe natural graphical representation

of v.

2.3 Syntacticinterpretations

Among al OSF agebras, there are those whose domain elements are concrete data
structures. We call these syntactic interpretations. We will now present three important
examples obtained directly from the syntactic expressions of ¢-terms. They turn out to
be canonical interpretations for OSF constraints.*

The most immediate syntactic OSF interpretation isthe OSF algebra ¥ of «-terms.
Thedomain of ¥ istheset of all v)-terms, up to graph representation. That is, weidentify
-terms as values of ¥ if they are represented by the same graph. For example, thetwo
ptemsY :s({y = X: 8, 6= X)and Y : ({1 = X, £, = X: &) clearly correspond
to the same object. Indeed, they have the same OSF graph representation.

A sort s€ Sisinterpreted as;

¥ = {¢ € D? | Sort(Root(¢)) < s},

where Sort(Root(v)) is the root sort of the graph of . A feature £ € F isinterpreted
as afunction ¢¥ : DY — DY asfollows. Let ¢/ be a-term and g its graph. If (X, Y)
is the edge of g labeled by ¢, then ¢ (g) is the -term represented by the maximally
connected subgraph g’ of g rooted at thenode Y. That is, g’ is obtained by removing all
nodes and edges which are not reachable by a directed path from the node Y.

If X does not have the feature ¢, i.e., there is no outgoing edge from the root of g
labeled ¢, then ¢¥ isthe y-term Z, ,, : T, for anew variable Z; ,, uniquely determined
by the feature ¢ and the i-term .

For example, taking v = X : T(f1= Y : s, = X), we have (¥ () = Y : s,
G W)=, and (f(¢) = Zepy : T

We obtain two other examples of OSF agebras when we factorize the -term
domain by further identifying values. The rst one identies two -terms which are
equal up to variable renaming. The obtained domain obvioudy spans an OSF agebra
We call this OSF algebra .

The second one is obtained from ¥y by further identifying two v-terms if their
(possibly innite) tree unfoldingsare equal . A tree unfoldingis obtained from a v -term
by associating a unique node to every feature path. It is well known that a rooted
directed graph represents a unique rational tree [8]. In our case, we obtain trees whose
nodes are labeled by sorts and whose edges are labeled by features. We call these

LIf an OSF constraint is satisable in some interpretation, then it is also satisable in all
canonical interpretations.



(rationa) OSF trees. It is again clear that the set of all OSF trees spans an OSF algebra
T2

Formally, OSF algebras can a so beintroduced as logical structures, namely models
providing interpretations for the sort symbols as unary predicates and the feature
symbols as unary functions, which satisfy the Sort Axiom saying, for dl sortssand s,

X:s& X:d — X:sAfS.

Furthermore, both ¥y and 7 satisfy a Constructibility Axiom stating essentially the
satisability of any OSF constraint ¢ coming from dissolving a «-term . More
precisely, if ¥ = Var(¢) and, fori = 1,...,n, X.¢; = Y ¢ ¢ for any variable Y, and
Yi ¢ Var(¢), and X; € X, then thisaxiom states the validity of:

YY1...VYn. 3X. ¢ & X1 b1 = Y1 & ... & Xn.bn = Y.

Theconstructibility axiomisageneralization of theaxiom of functionalitywhichisvalid
for rst-order terms. Namely, the axiom which guarantees that, given a constructor
symbol f of rank n, an individual X = f(Yy,...,Y,) exists if individuals Y; exist,
i=1,...,n Formdly, taking¢ = X : f,

YY1 oo WY XX F&X1I=Y1& ... &Xn=Y,.

The form we give for constructibility is indeed more genera than plain functionality
since it states the existence of something which is not vaid for rst-order terms; e.g.,
self-referential individuas. For example, 3X. X.£ = X isobtained as an instance of our
axiomby takingn=0and ¢ = X.¢ = X.

2.4 OSF unication

We describe next how to determine whether an OSF constraint ¢ isconsistent; i.e,, if it
is satisable in some OSF agebra.Aland, therefore, in particular in ¥. Unication of
two v-terms reduces to this problem.

Denition4 Solved OSF Constraints. An OSF constraint ¢ is called solved if for
every variable X, ¢ contains:

¢ at most one sort constraint of the form X : s, with — < s;

o at most one feature constraint of the form X.¢ = Y for each £; and,

¢ no other occurrence of the variable X if it containsthe equality constraint X =Y.

In [5], we show that an OSF constraint in solved form is aways satisable. Now,
by Denition 3, the OSF constraint obtained as the dissolved form of any «-term
is de facto in solved form.® Hence, such a constraint is always satisable. It is so, in
particular, in the canonica interpretation ¥ with, interestingly enough, the valuation
that assignsto each variable X in ) the valuein DY that is the very «)-term rooted in X
iny. For thisreason, a ¢ -term can aso be seen as avariable substitution.

Given an OSF congtraint ¢, it can be normalized by choosing non-deterministically
and applying any applicable rule among the transformations rules shown in Figure 1



Feature Decomposition:
Y &UL=V&ULZ=W
(B.1)

T p&ULE=VE W=V

Sort Intersection:
p&U:s&U:¢

B2 —m———
& U :sng
Variable Elimination:

B.3 Pp&U=V _— .
B3 vueuzy UM anduz

Inconsistent Sort:

Variable Clean-up:

$&U=U
B5 —m

Fig. 1. Basic simplication

until noneapplies. A ruletransformsthe numerator into the denominator. The expression
#[X/Y] stands for the formula obtained from ¢ after replacing all occurrences of Y by
X.

Theorem 5 OSF Constraint Normalization. The transformation system of Figure 1
is solution-preserving, nite terminating, and conuent (modulo variable renaming).
Furthermore, it alwaysyields a normal formthat is either the false constraint — or an
OSF constraint in solved form.

Inour case, theconstraint ¢ tobenormalizedwill beof theformp, & o & X; = X;
i.e., the conjunction of the dissolved -terms 1 and v, together with an equation
identifying their root variables X; and X;. If ¢ normalizes to the false constraint, then
the two «-terms are non-uniable. Otherwise, the resulting solved OSF constraint isa

27 is essentially the feature tree structure of [6] and [7, 13]. The difference liesin our using
partially-ordered sorts and total, as opposed to partial, features.
3 More precisely, thisis true if we forget superuoustrivial sort constraints of theform X : T.



conjunction of equality constraints and of the dissolved form of some ¢-term. This -
termisthe most general unier of ;1 and ), up to variable renaming. We shall see that
this «-term has two equivalent order-theoretic characterizations (cf., Propositions 11
and 12).

2.5 OSF orderings and semantic transparency

In this section, we introduce the notion of endomor phic approxi mation which captures
precisely and elegantly object inheritance. We also show how it relates to the logic and
type views, capturing semantically the essence of constraint entailment.

Endomorphisms on a given OSF agebra A, i.e, homomorphisms from A to A,
induce a natural partial ordering.

Denition 6 Endomor phic Approximation. An approximation preorder C 4 is de-
ned such that, for two elements d and ein D#, d approximates e if and only if eisan
endomorphic image of d. Formaly, d C 4 e iff v(d) = efor some endomorphism~ :
A— A

We shall omit subscripting C 4 and write C when .4 = ¥. Notice that this ordering
on -terms as vaues of the domain of ¥ trandates into an information-theoretic
approximation ordering on «-terms as types.

We note that endomorphisms on ¥ are graph homomorphisms with the additional
sort-compatibility property. A node labeled with sort s is aways mapped into a node
labeled with s or a subsort of s. An edge labeled with a feature is mapped into an
edge label ed with the same feature. Thus, endomorphic approximation captures exactly
object-oriented class inheritance. Indeed, if an attributeis present in aclass, thenit is
also present in a subclass with asort that isthe same or rened. Since features are total
functions, this also takes care of introducing a new attribute in a subclass: it renes
T. Note aso, that the restriction of v to the set of nodes denes a variable binding; it
corresponds to the notion of a matching substitution for rst-order terms.

The following fact was established in [5].

Proposition 7 ¢-Terms as Filters. The denotation of a «-term in ¥ is the set of all
-terms it approximates; i.e.,

[v1” = {¥' €D¥ | C¢'}.

The next ordering is the ordering on w-terms that expresses that one v-term is
\more specic than" another one.
Denition 8 -Term Subsumption. A -term + is subsumed by a -term ' if and
only if the denotation of v is contained in that of ' in al interpretations. Formally,

v <y iff [el4 C [T
for al OSF agebras A.

In fact, it is sufcient to limit the above statement to the OSF agebra ¥ only; i.e,
[¥1” C [¥1".

The next and last ordering isalogica ordering on -terms. We state it here in less
genera termsthanin [5].



Denition 9 ¢-Term Entailment. A t-term v entails a y-term +’ if and only if, as
constraints, » impliesthe conjunction of ¥ and X = X’; more precisdly,

Y- iff o —3U (X=X &)
where X, X" aretherootsof v and ¢’ and/ = Var(y").

It is again sufcient to state the validity of the implication in the OSF algebra ¥ only
(namely, using |=w). Thisis not true in the more generd wording and holds here only
because the constraints are obtained by dissolving «-terms and their root variables are
bound together.

Proposition 10 Semantic Transparency of Orderings. Thefollowing are equivalent:

o Yy C o)  approximatesy’;
o Y < ¥ Y’ isa subtype of v;
o ) =) W entails)’;

o [v]¥ C[4']¥ thesetof v-termsItered by v iscontained in that Itered by .

The following two propositions are straightforward. Let ¢, and 1, be two ¢-terms
with variables renamed apart; i.e., such that Var(y1) N Var(y2) = O. Let Xy and X,
be their respective root variables. Let ¢ be the norma form of the OSF constraint
Y1 & P & Xp = Xo.

Proposition 11 «-Term Unication. The normal form ¢ isthe false congtraint if and
only if [¥1]* N [¥2]*# = O, for all OSF algebras.A. Otherwise, ¢ isthe conjunction
of equality constraints and of the dissolved version of some -term . This ¢-termis
the <-GLB of +; and «, up to variable renaming; i.e., [¥']* = [w1]* N [¥204.

Proposition 12 C-L UB of two y-terms. The t)-term« aboveisapproximated by both
11 and v, and isthe least ¢-term for T (i.e., approximating all other ones) with this

property.

3 Proving OSF Guards

In thefollowing, we use ¢ as the context formula. It isassumed to be an OSF-constraint
in solved form, athough not necessarily coming from dissolving a single i-term. The
variablesin ¢ are global. We shall use A" to designate the set of global variables Var(¢)
and the letters X, Y, Z, ..., for variablesin X’. We use 1, a dissolved -term, as the
guard formula. The variablesin ¢ arelocal to ¢; i.e., Var(¢) N Var(y) = 0. We shall
use !/ to designate the set of local variables Var(y) and the letters U, V, W, ..., for
variablesin . The letter U will aways designate the root variable of . We aso refer
to ¢ as the actual parameter, and to v as the formal parameter. By extension, we will
often use the qualiers global/local , actual /formal, and context/guard, with all syntactic
entities; e.qg., variables, formulag, constraints, or sorts.
We investigate a proof system which decides two problems simultaneously:
o thevaidity of VA (¢ — JU. (v & U = X) );
o theunsatisabilityof ¢ & v & U = X.



Therst test is called atest for entailment of the guard by the context, and the second,
atest for disentailment. This second test is equivalent to testing the validity of the
implication VX' (¢ — —3U. (¥ & U = X) ).

Since both tests amount to deciding whether the context implies the guard or its
negation, all loca variables are existentially quantied and al global variables are
universally quantied.

The relative-simplication system for OSF constraints is given by the rules in
Figures2, 3, and 4. An OSF constraint » simplies to v’ relaively to ¢ by a

Feature Decomposition:
Y& UL=VE&UL=W

V& UL=V& W=V

(F1)

Relative Feature Decomposition:

P& U=X&UL=V
(F.2)1/}&U TEVESY iTXL=YeEo

Relative Feature Equality:
PY&U=ZX3&8U=X&V=Y, ifXil=Y1€ ¢, Xl =Y2€¢

(F3) :
VE&U=ZX & U=X8&V=Y,&V=Y, adV=Yo¢ 3

Variable Introduction:

P& U=X3&U=X, ifX1l=Yr€ ¢, Xl =Y2€¢

(F4) : : : ——and Y; ¢ Var(y) and Y2 ¢ Var(y)
Pp&U=X&U=X&V=Y1&V=Y2 yherevisanewvariable

Fig. 2. Smplication relatively to ¢: Features

simplicationrule p if % isan instance of p and the applicability condition (on ¢ and
on ) is satised. We say that ¢» smpliesto ' relatively to ¢ if it does so in anite
number of steps.

The relative-simplication system preserves an important invariant property: a
global variable never appearsontheleft of avariableequality constraintin theformula
being smplied. Thus, an equality U = X is a directed relation binding the local
variable U to the global variable X. Furthermore, a global variable is never eliminated
by aloca one, or vice versa.



Sort Intersection:
P& U:s&U:¢

P& U:sAS

(1)

Sort Containment:

P& U=X&U:s
(S.2)1/)&U X ifX:5 €¢,ands <s

Sort Renement:

Y& U=X&U:s
(S3) ifX:s €¢,andsns <s
Y& U=X&U:sAg

Relative Sort Intersection:
P&  U=X&U=X ifX:seg¢,X 5 €eg,

(S4) : — SAS <ssAS <5,
Pp&U=X&U=X &U:sASd andU : s ¢ ¢, for any sort s

Sort Inconsistency:

v&U:—
(S5)

Fig. 3. Simplicationrelatively to ¢: Sorts

A set of bindingsU; = X;,i = 1,...,nisafunctional bindingif all the variables U;
are mutually distinct.

The effectuality of the relative-simplication system is summed up in thefollowing
Statement:

Effectuality of Relative-Simplication The solved OSF constraint ¢ entails
(resp., disentails) the OSF congtraint 3U. (U = X & ) if and only if the
normal form ¢’ of ¢» & U = X relatively to ¢ is a conjunction of equations
making up a functional binding (resp., is thefalse constraint ' = —).

There are two technical remarksto be made. Firstly, observe that in our formulation
of the entailment/disentailment problem, the implication contains only one equality
U = X binding only one global variable. However, thisis not a restriction. Equations
Ui = Xy, ..., Uy = X, canbeequivaentlyreplaced by addingX; = X1 & ... & X, =



Relative Variable Elimination:

P &U=X&V=X PV €)Y = X ¢ 9,
Y[U/V] & U=X&V=XadU#V

(E1)

Equation Entailment:
P& U=X&U=Y

(E2) ifX=Yorif X=Ye¢ .
Y& U=X

Fig.4. Simplication relatively to ¢: Equations

X.ntothecontextp andU; = U.1& ... & U, = U.n& U = Xto v, where X and U
are new. That is, one obtainsthe conjunction of one equality U = X and aguard which,
again, isadissolved ¢-term.

Secondly, the fact that ¢ is a dissolved -term rooted in U ensures that the test of
entailment of ¢» & U = X by ¢ does not depend on whether theimplication holdsin all
OSF interpretations, or only in ¥, or 7. Thisisnot necessarily so if U is not the root of
. Indeed, let us assume that U is not the root of ¢; for example, take ) tobeV.¢ = U.
Clearly, while VX (T — 3U3V (¢ & U = X)) holdsin ¥ and 7, it does not hold in
all OSF algebras where it is not guaranteed that every element is the ¢-image of some
other element. In ¥ (and 7), thisisthe case since any element X is the £-image of at
least one element; namely, T (¢ = X).

Effectuality of relative-simplication is the central result of this section. We now
proceed through the technical details aimed at establishing its claim in the form of two
theorems: Theorem 22 and Theorem 24.

4 Termination of relative ssimplication

For the purpose of showing that the relative simplication rules aways terminate, we
introduce an additional set of rules shown in Figure 5 extending basic simplication.
These rules are not meant to be used in the effective operation of basic simplication,
but only servein our proof argument. Theideaisthat relative simplication of aguard
relatively toacontext ¢ can be\simulated" by normalizingtheformula¢ & & U = X
using basic simplication (Figure 1) together with the rules of Figure 5. It isnot ared
simulation, however, as Rules (B.1){ (B.5) have for side effect to destroy the context.
The point is that one application of a relative simplication rule can be made to
correspond to at least one application of one of Rules (B.1){(B.5), (X.1){(X.3). Since
thislatter system can be shown to terminate, then so can relative simplication.

Rules (X.1){(X.3) perform essentially the same work as Rules (B.1) and (B.2)
except that they do no erase parts of the formula. In Rule (X.1), we denote by ~_



the reexive, symmetric and transitive closure of = (that is, the equivalence relation
on the variables occurring in the constraint which is generated by the =-pairs between
variablesin the constraint).

Extended Feature Decomposition:
p&UL=U &UL=U"

(X.1) ifU’ . U”
W& UL=U &UL=U"& U =U

Extended Sort Intersection 1:

(x2)1/)&U:S&U:SI ifsns < ¢ foranys”’
& U:s&U:isAS suchthatU : 8" € ¢

Extended Sort Intersection 2:

(X.3) p&U:s&U:s ifsans < g foranys’
T4 &U:s&U:S&U:SAS suchthat U : s” € ¢

Fig. 5. Rules extending basic simplication

Lemmal3. The extended basic-simplication rules (B.1){(B.5), (X.1){(X.3) dene
equival ence transformations; furthermore, they are terminating.

Proof. The rst statement is clear. The proof of the second statement is an extension
of the termination proof of the basic simplication rules (B.1){(B.5) from [5]: (X.1)
can be applied only a nite number of times, since the number of equivaence classes
partitioningthe nite set of variablesoccurring inthe constraint whichisto besimplied
decreases by 1 with each application. (X.2) and (X.3) can beapplied only anitenumber
of times, sincethey can be applied at most once for every sort occurringin the constraint
which isto be simplied.

Lemmald. Let v & U = X simplify to ¢’ relatively to ¢ by a relative-simplication
step not using Rule (F.4). Then, ¢ & v & X = U simpliesto ¢’ & " by at most one
extended basic-simplication step and a nite number of variable elimination (B.3),
where ¢’ and +" are equal up to variable renaming.

Proof. 1t can be seen that each relative ssimplication rule, except for (F.4), corresponds
to one or several extended basic-simplication rules. Rules (F.1){ (F.3) correspond to
Rules (B.1) and (X.1). Rules (S.2){ (S.4) correspond to Rules (B.2), (X.2) and (X.3).



Rules (E.1){(E.2) correspond to Rule (B.3). This, and the fact that extended basic-
simplication rules are equivalence transformations, alow us to conclude.

Lemmalb. Lety simplifytoy’ of theformy & Uy = X; & U; = X; byanapplication
of Rule (F.4) relatively to ¢. Then, v & U; = X; smpliesto the same constraint v’ by
an application of Rule (F.3) relatively to ¢.

Proposition 16. The relative-simplication rules are terminating.

Proof. Thisis proved by induction on n, using Lemma 14 and Lemma 15. For every
relative-simplication chain ¢; & Uy = Xg,..., ¥y & Uy = X, reatively to ¢, there
exists an extended-basic simplication chain of length n + k, where k > 0. This chain
starts with the basic constraint ¢ & v & X; = U; & X = U, where X = U stands
for the equations we have added so that each global variable X is bound to some local
variable U (which, if necessary, is chosen new).

Since, according to Lemma 13, extended-basic-simplication chains are nite, so
arerelative-simplication chains.

5 Correctness and completeness

We rst note another consequence of the lemmata of the last section. Let V stand for
the new local variables introduced by Rule (F.4).

Proposition17. Lety & U = X simplifyto ¢’ relatively to ¢. Then, ¢ & v & U = X
and3V. (¢ & ') are equivalent.

Proof. Let us rst assume that v & U = X simplies to ' relaively to ¢, not
using Rule (F4). Then, ¢ & v & U = X and ¢ & ' are equivaent by Lemma 13
and Lemma14. Let v & U = X smplifyto ¢y & U =X & V=X & V=X
relatively to ¢, by an application of Rule (F4). Clearly, ¢ & v & U = X and
¢ & V. (¥ & U =X &V = X;) are equivaent. Thus, with Lemma 15, we can apply
therst part of theproof on v & U = X & V = X;.

The next corollary states a property which is important for showing that relative
simplication can be used for proving entailment, the invariance property.

Corollary 18 Invariance of Relative-Simplication. If v & U = X simplies to ¢’
relatively to ¢, then 3. (¢ & 4 & U = X) and F/3V. (¢ & ¢') are equivalent.

Itishelpful tolist systematically thenormal-form propertiesof therel ative-simplication
system.

Proposition 19. The constraint ¢ is in normal form relatively to ¢ iff the following
conditionsare satised:

e ) isin solved-form;

¢ aglobal variable X may occur in v only intheform_ = X;

o if X = _¢€ ¢, then X doesnot occur in v;



o ifV=Xegy,and_= XL e é, then_=V.L &

e ifV=Xey,andX:se¢,andV:s € ¢, thens <s

o If{V=XV=Y}C¢,and{X =XLY =YL} C o then{W=X W=Y}C
1, for some variable W;

e if{V=XV=Y}C¢,and{X:s,Y: s} C ¢, thenV : sc ¢ for somesort s
suchthats < s ands < s,.

Proof. By inspection of the relative-simplication rules.

Proposition 20. Let ' be a normal form of ¢y & U = X relatively to ¢. Let ¢’ be
the constraint obtained from ¢ eliminating all redundancies according to the rules of
Figure 6, and removing bindingsV = _ of new variables introduced by (F.4). Then, the
constraint ¢’ & ' isa solved-form of the constraint ¢ & ¢ & U = X, up to variable
renaming.

Redundant Sort Elimination:

ifU =X e v,and
U:s € ¢ for somes <s

Redundant Feature Elimination:

qS&X’lixl.E&X’Z:'XZ.E_
(R'2)¢>&X"X1z ifU=Xiep,U=Xp€¢
1 = /M-

Entailed Sort Redundancy Elimination:

P& X1:S&Xz: S
(R3) : fU=Xieyp,U=X€9¢

Fig. 6. Redundancy dimination rules

Proof. According to Proposition 17, ¢ & v & U = X isequivaent to V. ¢ & v/,
where V' stands for the new variables. According to the last three conditions of
Proposition 19, Rules (R.1), (R.2) or (R.3) perform equivalence transformations. Thus,
if applications of these rules modify ¢’ to ¢”, then ¢’ & ' isequivalentto ¢” & .
According to the rst four conditions of Proposition 19, ¢” & ' isin solved-form
up to variable eliminations via Rule (B.3). More precisaly, these variable eliminations



are gpplications of Rule (B.3) using new equations of the form V = X introduced
by Rule (F.4). They produce possibly equations of the form X = Y between global
variables; then, further variable eliminations consist of applicationsof Rule (B.3) using
these new equations. Asalast step, these new equationsare removed inorder to obtaina
congtraint which isexactly equivalentto ¢ & & U = X, and not just up to existential
guantication of new variables.

Corollary21. If the normal form of v» & U = X relatively to ¢ is not —, then
¢ & ¢ & U= Xissatisable.

Proof. In [5] weshowedthat aconstraintissatisableif and only if it hasasolved-form,;
that is, its basic norma form is different from —. The statement then follows from
Proposition 20.

Theorem 22 Disentailment. Let /' be a normal formof ¢y & U = X relatively to ¢.
Then, ¢ disentails3i/. (v & U = X) ifand onlyif ¢/ = —.

Proof. If ¢/ = —, thenVX (¢ — —-3U3V. ¢') isvalid. From Corollary 18, it follows
that VX (¢ — —3U. ¢ & U = X) isvadlid, too. If ' # —, then Corollary 21 can be
applied.

Proposition 23. Ifthenormal form+’ of 1) & U = X relativelyto ¢ isnota conjunction
of equations representing a functional binding, then ¢ & —3U. (¢ & U = X) is
satisable.

Proof. The assumption on the form of ' means that one of the three following cases
istrue, for some V € Var(y') boundtosome X € Var(¢);i.e,V =X € ¢’

1. ¢’ containsasort constraint on V; say, V : s, or,
2. ¢’ containstwo equationsonV; say, V=X & V= Y; or,
3. ¢’ containsafeature constrainton V, say, V.£ = W.

For each case, we can nd a constraint ¢’ such that ¢ & ¢’ is satisable and disentails
¢'. Then, ¢ & ¢’ alsodisentails3. (¢ & U = X);i.e, ¢ & ¢' — -3U. (¥ & U =X)
isvaid. Clearly, thisis sufcient to show that ¢ & —3U/. (¢ & U = X) issatisable.

(1) V : s e ¢'; then, according to the third condition of Proposition 19, ¢ contains
either no sort constraint on X or one of the form X : s where s < §. Thus, we set
¢’ = X : ¢, in the rst case, for some sort s’ incompatible with s; i.e, such that
sA S’ = —. Inthesecond case, wechoose s’ suchthat sA S’ = —ands’ < §.

QV=X&V=Yce <y, then either V:s e ' and we are in Case (2), or,
according to the last condition of Proposition 19, at most one of X and Y issorted in ¢.
IfY:se ¢,wesat ¢’ = X: s forsomesort s suchthatsAs = —. If noneof Xand Y
issortedin ¢, weset ¢’ = Y:s& X: § forsomesortss, s suchthatsAs = —.

(3) V.41 = V; € ¥'; then, ¢ containsno feature constraint X.¢/; = _, according to the
fourth condition of Proposition 19. Without | oss of generality, we can assumethat > does



not contain redundant conjuncts.* There exists a sort s such that ) contains a conjunct
of theform: V.4, = V1 & Vi.lp = Vo & ... & Vn_1.4h = Vi & V, @ s, forsomen > 1.
Thus,weset ¢/ = Xfy = X1 & X0.lo = X0 & ... & Xn_1.lh = Xy & X, : S, for some
new variables Xy, ..., X, and some sort § suchthat sA s = —.

Theorem 24 Entailment. Let ¢’ bea normal formof v rlatively to ¢. Then, ¢ entails
3U. (¢ & U = X) if and only if ¢’ is a functional binding. Moreover, ¢ & ¢’ isa
solved OSF congtraint.

Proof. If v’ is a conjunction of equations representing a functional binding, then
3V, ¢ isvaid; thus, sois¢ — JUIV. ¢’. By invariance of relative simplication
(Corollary 18), it followsthat ¢ — . ) isvalid, too.

If ' has adifferent form then, either 1/ = —, or ¢/’ contains conjunctsthat are not a
functional binding. The fact that ¢ — JU/. ¢ isnot validistrivia intherst case. Inthe
other case, since the context ¢ is always assumed in solved form and, thus, satisable,
then it follows from Proposition 23.

Corollary25. Let v’ be the relative-smplication normal form of v & U = X
relatively to ¢. Then, the context entailsthe guard if and only if the conjunction ¢ & '
isthe solved-form of the conjunction¢ & ¢ & U = X.

Proof. Thisisan immediate consequence of Theorem 24 and Proposition 20.

6 Independence

The following theorem states that the OSF constraint system has the independence
property [10]. It is well-known that in any constraint system with this property it
is possible to solve constraints which are conjunctions of constraints and negated
congtraints by testing entailment. Namely, ¢ & —3if1¢1 & ... —3Uny issatisableif
and only if ¢ does not entail 3i4;. +;, for every i = 1,... n. Here 3i4; abbreviates the
existential quantication of variablesin Var (i) — Var(¢).

Clearly, ¢ entails 3. ;i if and only if ¢ entails 343U;. i[Ui/X] & Ui = X,
where we introduce a new variable U; for every X; € Var(¢) N Var(v;). Hence, given
that the independence property holds, we can use the relative-simplication a gorithm
in order to check satisability of conjunctionsof positive and negative OSF constraints.

For the formulation of the theorem, let us make a few assumptions that do
not incur any loss of generdity. First, we assume that i = Var(vi), Ui € U,
and Var(¢) N Var(+i) = O. Second, since they correspond to different existentia
quantication scopes, we will assumelf; N, = O for i # j. Finally, we again assume
that «; does not contain redundant constraints (cf., Footnote 4).

4 That is, we assume that every variable in ¢ has at least one sort constraint and that redundant
constraintsin v are removed. A redundant constraintin » isoneof theformX.£=Y & Y: T
where Y does not occur elsewhere in . Since we interpret features as total functions, thisis
not a proper restriction: redundant constraints can be moved into the functional expression or
the body of the guarded clause without changing the declarative or the operational semantics.
On the other hand, if this assumptionis fullled, then the entailment of ) & U = X by ¢ does
not depend on whether features are interpreted as total or partial functions.



Theorem 26 | ndependence. A congtraint ¢ entails the digunction of the constraints
;. (i & Ui = X)), fori = 1,... k, if and only if it entails one of them.

Proof. Theif-directionistrivial. Itiswfcienttoshowthatiqu & =3 (i & Ui = X))
issatisablefor every i, then¢ & A,_, | —3U;. (¢ & Uj = X) issatisable.

Extending the proof technique of Proposmon 23, we will nd a constraint ¢’ such
that ¢ & ¢’ is satisable and disentails ¢, for al i = 1,... k. As a consequence,
¢ & ¢’ dsodisentaills 3. (¢i & Ui = X). Thatis, ¢ & ¢>’ — =dU;. (¢ & Ui = X))
isvaid. Clearly, thisshowsthat ¢ & A;_ 1. AU i & UI X issatisable.

According to Theorem 24, |f ¢ & ﬁau. (¢i & Ui = X;) is satisable, then ¢,
the norma form of ; & U; = X relatively to ¢ is not a conjunction of equations
representing a functiona binding.

Thus, one of thethreefollowing casesistrue, for some V; € Var () bound to some

Xi € Var(¢);ie,Vi=X €y

1. ¢{ containsasort constraint on V;; say, V, : s; of,
2. ] containstwo equationson Vi; say, Vi = X & Vi = Y;;
3. ¢{ contains afeature constraint on V;, say, Vi.¢i = Wi.

(1) If Vi 1 5 € v, then ¢ contains either no sort constraint on X; or one of the form
X . 5 where s < g, according to the third condition of Proposition 19. Let U;, = X;,
fori; = 1,..., m, be the family of &l equations occurring in the diguncts binding a
local variable U;; to that same global variable X;. We add to ¢ the sort constraint X; : q/
where §” is some sort which isincompatible with those in the sort constraints U;, :
and,incase X; : § € ¢, isfurthermoreasubsort of §, §* < §.

@IfVi=X&Vi=Yey,andV, : s ¢ ¢ (cthewisewe are in Case (2)), then
weaddto ¢’ theconjunctsXi.t; = Z & Z, € s& Yi.t, = Z/ & Zl € S.Heresand s are
two incompatible sorts, and the ¢;’s are pairwise different features which do not occur
ing and v, fori=1,... k

(3) Finaly, we consider theset | of all indicesi,i = 1, ..., k, for which Case (3), but
neither Case (1) nor Case (2) applies. Thus, for i € |, ¢{ contains a feature constraint
of theformV, .4 = Vil. According to our assumption this constraint is not a redundant
conjunct; i.e, there existsa sort 5 such that «; contains, in fact, a conjunct of the form:

Vi = V& VI =V2& ... &V =V & Vg

J )

for somen > 1. We add to ¢’ the conjunct:
Xh=xtextre=xe .. &xXtn=xex: g,

for some new variables X, ..., X" and for some sort § incompatiblewith's.

If there are several diguncts ¢{j with exactly the same chain of feature constraints
starting in a variable bound to the same global variable, then s must be chosen to be
incompatible with the sortsin al of these chains. More precisely, if, fori; = 1,..., m,
the digunct ¢{_ contains the conjunct:

Vili =VE& VL =VE& . & VI =V & V) s,

then 5 ischosen assome sort suchthat s, A § = — foral i, ij=1,...,m.



7 Conclusion

We have overviewed in detail a complete and correct system for deciding entailment
and disentailment of constraints over order-sorted featur e structures. One motivation for
this system is parameter-passing for functionsin LIFE, but it is general and relevant to
all concurrent constraint languages. We used a technique of relative simplication [4]
which amounts to normalizing a constraint in the context of another. This yields an
incremental system with the additional benet of enjoying independence of negated
constraints.

Further work extending this should be to generalize our scheme to so-caled deep
guards over OSF structures whereby guards are not limited to plain OSF constraints
but may also contain relational atoms dened by clauses. Thisis particularly relevant
to LIFE in order to explain matching over objects with attached relational constraints.
This study in currently under way and will be reported soon.
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